Towards an era of smart life-cycle connected cyber-physical systems – SE implications or ...

... When is an automated vehicle (AV) ready to go?

Martin Törngren, Mechatronics, KTH Royal Institute of Technology, Stockholm

Zooming in \rightarrow Mechatronics and trends

When is an automated vehicle (AV) ready to go?

Technically? Socio-technically? What about upgrades and emergence?

Physical vs. Software vs. Data systems

	Physical systems	Software	Data
Phenomena and effects	Multiple coupled physical phenomena, "slow transfer"	State space; bugs; connectivity; variability "fast transfer"	Super-human performance; Brittleness
Abstractions, synthesis, and platforms	Approximations, analog, no single "platform technology"	Digital / discretization "platform" foundations; Abstracted physical props!	Learning based models
Extra- functional properties	Established cost models	Dependencies all-over, hard to estimate life-cycle cost	SW under the hood Data quality, availability; and accessibility

Combined ... and in systems at different levels -> CPS capabilities

Cyber-physical systems have far-reaching implications. Hipeac Vision 2021. https://doi.org/10.5281/zenodo.4710500

Cyber-physical systems

Public perception Regulations, standards Societal effects

Autonomy: Basic functions

New ground: Unprecedented complexity

Martin Törngren, KTH, KSEE2023

Human intelligence as a reference for automated CPS? Breaking new grounds

ADI – Autonomous Driving Intelligence

Illustration: Harry Campbell, IEEE Spectrum http://spectrum.ieee.org/cars-that-think/transportation/ self-driving/nxps-bluebox-bids-to-be-the-brains-of-your-car

Automated vehicle modeling & simulation tools

Challenges in building, operating and maintaining (collaborative) CPS

The world of software and bugs

- Industry average code ~ 15– 50 errors /KLOC
- Safety critical systems may reach 0.1 error/KLOC at very high cost

Deep learning: breakthroughs but brittleness

• Prediction machines with domain specific super-human capability but without explainability and contextualization beyond training data

Cyber-security threats and attacks

- Dynamic threat landscape; imbalance
- Complexity
 - Billions of transistors, LOC's and 100's of billions of (DL) parameters
- Automation surprises and pitfalls

Societal reliance on CPS

Human-centered Cyber-physical systems?

Arthur C. Clarke:

Any sufficiently advanced technology is indistinguishable from magic

Needs and tools when going into the "complex domain"

Cynefin model (Snowden, 1999)

- Learning and developing new methodologies and architectures
 - Sharing of data, incidents, failures, ...
 - Testbeds and controlled experiments!
- New sociotechnical frameworks, legislation, and agreeing on risks
- New innovation eco-systems
- Forums for debate!

Tech-driven vs. Societal involvement Cautionary vs. Innovation principles

www.tecosa.center.kth.se

TECOSA - Trustworthy Edge Computing Systems and Applications

Welcome Sept 1st to KTH!

One flagship demonstrator: collaborative awareness and risk mitigation in road traffic

MARTIN TÖRNGREN, KTH, KSEE2023

https://doi.org/10.1016/j.mechatronics.2013.11.013

Zooming out again

Martin Törngren, KTH, KSEE2023

Implications for (systems) engineering?

- Know your domain Cynevin, and apply appropriate tools
- Apply systems thinking and SE principles but strengthening
 - Human-CPS interactions and concerns (all stakeholders)
 - Embrace but balance complexity
 - Key properties: Transparency, resilience, monitoring, human oversight, multiple aspects of trustworthiness and their trade-offs
 - Reconcile/integrate and balance perspectives on SW/Data as part of CPS
 - Architect to prepare for upgrading and circularity
- Need to address educational renewal and life-long learning
- Competence networks

So, when is an automated vehicle (AV) ready to go?

Positive risk balance (requires understanding residual risk) or the ALARP principle

Enablers

- Run-time risk monitoring (vehicle, edge, cloud)
- Complexity reduction, control and management
- Operational safety and performance
- New methodologies

Open question how to assess "the common sense" for higher levels of automation

Contact: martint@kth.se - https://www.kth.se/profile/martint/